Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1711: 464449, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37865025

RESUMO

Haloacetic acids (HAAs) are one of the most important chlorinated disinfection by-products generated during water disinfection in the fresh-cut industry, and they can remain in the product, resulting in a consumer health risk. In this study, ultra-high-pressure liquid chromatography-tandem multiple reaction monitoring mass spectrometry (UHPLC-MRM) analysis used for drinking water was optimized and applied for the quantification of nine HAAs (HAA9) in fresh-cut lettuce and process water samples, with the complex matrix interferences for separation, and quantification problems. The method showed good selectivity, specificity and linearity, satisfactory values for trueness (recoveries of 80-116 %), precision (<22 %), and uncertainty (<55 %). Quantification limits varied from 1 to 5 µg L-1 or µg kg-1. The matrix effect for tribromoacetic, bromochloroacetic and chlorodibromoacetic acid was corrected by matrix-matched calibration and standard addition. After storage at -20 °C, only monobromoacetic acid was the HAA which loss happened after 7 days. The application of the methodology in lettuce and process water samples from the industry was successfully implemented. Therefore, this method could be employed for the quality control and regulatory analysis of HAAs in fresh products and process water from the fruit and vegetable industry.


Assuntos
Desinfecção , Água Potável , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Água Potável/análise , Espectrometria de Massas em Tandem/métodos
2.
Chemosphere ; 288(Pt 2): 132583, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34662631

RESUMO

A case study of 15 wastewater treatment plants (WWTPs) at a full-scale was assessed for the risks of disinfection byproduct (DBP) formation, mainly the regulated trihalomethanes (THMs) and haloacetic acids (HAAs) and chlorate as an inorganic byproduct regulated recently in the EU. Raw wastewater from large, medium/small urban areas were treated with single or combined disinfection processes (i.e., chlorine, peracetic acid (PAA) and ultraviolet (UV) radiation). Sampling was executed once a month over seven months for the medium/small WWTPs and twice a month for the large ones. Due to the potential risk of SARS-CoV-2 contaminated wastewater, several inactivation methods were examined before the DBP analysis. Due to the inactivation step, the stability of THM4 and HAA9 suffered reductions, monitoring their presence only in the effluents after the disinfection treatments. In contrast, chlorate levels remained unchanged after the inactivation treatment; thus both raw wastewater and effluents were examined for their occurrence before disinfection treatments. Results showed that chlorate residues in the raw wastewater varied greatly from undetected levels to as high as 42.2 mg L-1. As the continuous monitoring of DBPs was performed, a positive correlation with chlorine or chlorine/UV was found. Changes in the physicochemical parameters indicated that the quality of the raw wastewater varied considerably depending on the WWTPs, and it influenced byproduct formation. In all WWTPs, chlorine alone or combined with UV significantly increased the presence of THMs, HAAs, and chlorate levels in the treated effluents. When the same WWTPs changed to PAA or PAA/UV, DBPs were diminished completely. This study highlights the risk of chlorate residues in raw wastewater during the pandemic. It also showed how the chemical risks of DBP formation could be reduced by changing the chlorinated disinfection technologies to PAA or PAA/UV, particularly if reclaimed water is intended for agricultural irrigation to minimize DBP residues.


Assuntos
COVID-19 , Purificação da Água , Desinfecção , Humanos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...